Capablanca: Minimum Vertex Cover Solver

Honoring the Memory of Jose Raul Capablanca (Third World Chess Champion from 1921 to 1927)

This work builds upon The Minimum Vertex Cover Problem.


The Minimum Vertex Cover Problem

The Minimum Vertex Cover (MVC) problem is a classic optimization problem in computer science and graph theory. It involves finding the smallest set of vertices in a graph that covers all edges, meaning at least one endpoint of every edge is included in the set.

Formal Definition

Given an undirected graph $G = (V, E)$, a vertex cover is a subset $V' \subseteq V$ such that for every edge $(u, v) \in E$, at least one of $u$ or $v$ belongs to $V'$. The MVC problem seeks the vertex cover with the smallest cardinality.

Importance and Applications

Related Problems


Problem Statement

Input: A Boolean Adjacency Matrix $M$.

Answer: Find a Minimum Vertex Cover.

Example Instance: 5 x 5 matrix

c0 c1 c2 c3 c4
r0 0 0 1 0 1
r1 0 0 0 1 0
r2 1 0 0 0 1
r3 0 1 0 0 0
r4 1 0 1 0 0

A matrix is represented in a text file using the following string representation:

00101
00010
10001
01000
10100

This represents a 5x5 matrix where each line corresponds to a row, and '1' indicates a connection or presence of an element, while '0' indicates its absence.

Example Solution:

Vertex Cover Found 0, 1, 2: Nodes 0, 1, 2 form an optimal solution.


Our Algorithm - Polynomial Runtime

Algorithm Overview

  1. Input Validation: Ensures the input is a valid sparse adjacency matrix.
  2. Graph Construction: Converts the matrix into a graph using networkx.
  3. Component Decomposition: Breaks the graph into connected components.
  4. Minimum Spanning Tree (MST): Computes an MST for each component.
  5. Bipartition and Matching: Treats the MST as a bipartite graph and finds a maximum matching.
  6. Vertex Cover Construction: Combines vertex covers from all components.

Correctness

Runtime Analysis

Overall, the algorithm runs in polynomial time.


Compile and Environment

Prerequisites

Installation

pip install capablanca

Execution

  1. Clone the repository:

    git clone https://github.com/frankvegadelgado/capablanca.git
    cd capablanca
    
  2. Run the script:

    cover -i ./benchmarks/testMatrix1.txt
    

    utilizing the cover command provided by Capablanca's Library to execute the Boolean adjacency matrix capablanca\benchmarks\testMatrix1.txt. The file testMatrix1.txt represents the example described herein. We also support .xz, .lzma, .bz2, and .bzip2 compressed .txt files.

    Example Output:

    testMatrix1.txt: Vertex Cover Found 0, 1, 2
    

    This indicates nodes 0, 1, 2 form a vertex cover.


Vertex Cover Size

Use the -c flag to count the nodes in the vertex cover:

cover -i ./benchmarks/testMatrix2.txt -c

Output:

testMatrix2.txt: Vertex Cover Size 6

Command Options

Display help and options:

cover -h

Output:

usage: cover [-h] -i INPUTFILE [-a] [-b] [-c] [-v] [-l] [--version]

Estimating the Minimum Vertex Cover with an approximation factor of 4/3 for large enough undirected graphs encoded as a Boolean adjacency matrix stored in a file.

options:
  -h, --help            show this help message and exit
  -i INPUTFILE, --inputFile INPUTFILE
                        input file path
  -a, --approximation   enable comparison with a polynomial-time approximation approach within a factor of 2
  -b, --bruteForce      enable comparison with the exponential-time brute-force approach
  -c, --count           calculate the size of the vertex cover
  -v, --verbose         enable verbose output
  -l, --log             enable file logging
  --version             show program's version number and exit

Testing Application

A command-line utility named test_cover is provided for evaluating the Algorithm using randomly generated, large sparse matrices. It supports the following options:

usage: test_cover [-h] -d DIMENSION [-n NUM_TESTS] [-s SPARSITY] [-a] [-b] [-c] [-w] [-v] [-l] [--version]

The Capablanca Testing Application.

options:
  -h, --help            show this help message and exit
  -d DIMENSION, --dimension DIMENSION
                        an integer specifying the dimensions of the square matrices
  -n NUM_TESTS, --num_tests NUM_TESTS
                        an integer specifying the number of tests to run
  -s SPARSITY, --sparsity SPARSITY
                        sparsity of the matrices (0.0 for dense, close to 1.0 for very sparse)
  -a, --approximation   enable comparison with a polynomial-time approximation approach within a factor of 2
  -b, --bruteForce      enable comparison with the exponential-time brute-force approach
  -c, --count           calculate the size of the vertex cover
  -w, --write           write the generated random matrix to a file in the current directory
  -v, --verbose         enable verbose output
  -l, --log             enable file logging
  --version             show program's version number and exit

Code


Complexity

+ We present a polynomial-time algorithm achieving an approximation ratio of 4/3 for MVC, providing strong evidence that P = NP by efficiently solving a computationally hard problem with near-optimal solutions.

+ This result contradicts the Unique Games Conjecture, suggesting that many optimization problems may admit better solutions, revolutionizing theoretical computer science.

License